

DCI-003-1016031 Seat No. ____

B. Sc. (Sem. VI) (CBCS) Examination

July - 2022

601: Physics

Faculty Code: 003

Subject Code: 1016031

		•	
Time:	2:30 I	Hours] [Total Marks:	70
Instructions:		(1) All questions are compulsory.	
		(2) Symbols have their usual meanings.	
		(3) Figures to the right indicate marks.	
1 (A	A) Ans	wer the following in short.	4
	(1)	The proton and neutron are jointly called as	
	(2)	Isobars are atoms of different elements having the	
		same number of	
	(3)	According to the liquid drop model of nucleus, the	
		density of nucleus is independent of	
	(4)	The magic numbers are given by the model	
		of the nucleus.	
(B) Ans	wer in Brief. (any one)	2
	(1)	The binding energy of $_{21}\mathrm{Sc}^{50}$ is 425 MeV. How much	
		energy is required to remove a nucleon from it?	
	(2)	Calculate the binding energy of 21Sc50 using semi-	
		empirical mass formula, if $a = 14$, $b = 13$, $c = 0.583$,	
		$d = 19.3$ and $\delta = 33.5$	
(C) Ans	wer in detail. (any one)	3
	(1)	Write a note on nuclear density.	
	(2)	Give evidences of shell model of nucleus.	
DCI-00	3-1016	031] 1 [Con	td

	(D)	Write a note. (any one)		5
		(1)	Explain Rutherford's alpha scattering experiment and	
			discuss its results.	
		(2)	Write the semi-empirical mass formula and explain the	
			terms.	
2	(A)	Ans	wer the following in short.	4
		(1)	Define natural radioactivity.	
		(2)	What is the charge of an α -particle?	
		(3)	The penetrating power of β -particles is	
			(more/less) than that of α -particles.	
		(4)	γ -rays are not affected by and	
			fields.	
	(B)	Ans	wer in brief. (any one)	2
		(1)	A radioactive substance has a half-life of 50 days.	
			Calculate the radiocative disintegration constant and	
			the average life period.	
		(2)	A radioactive substance has a decay constant 0.0182	
			per day. Calculate the time taken for 20% of the	
			original number of atoms to remain unchanged.	
	(C)	Ans	wer in detail. (any one)	3
		(1)	Write six properties of γ -rays.	
		(2)	Explain the theory of beta decay.	
	(D)	Write a note. (any one)		5
		(1)	Derive the law of radioactive decay.	
		(2)	Explain the method of calculating the age of the earth.	
3	(A)	Ans	wer the following in short.	4
		(1)	Define stopping power for heavy charged particles.	
		(2)	Write in expanded form $_4\mathrm{Be}^9$ (α , n) $_6\mathrm{C}^{12}$.	
		(3)	Complete the reaction $_{29}\text{Cu}^{65+}$ \longrightarrow $_{30}\text{Zn}^{65+}_{0}\text{n}^{1}$.	
		(4)	The characteristic curve of a GM counter is also called	
			curve.	

- 2 (B) Answer in brief. (any one) Determine the Q-value in the following reaction: $_7N^{14}+_2He^4 \rightarrow _8O^{17}+_1H^1+Q$. The atomic masses are as follows: $m(_7N^{14}) = 14.003074 \text{ u}, m(_2He^4) = 4.002604 \text{ u},$ $m(_{8}O^{17}) = 16.99913 \text{ u}, m(_{1}H^{1}) = 1.007825 \text{ u}.$ Comment on the result. The rest mass of $_{13}Al^{27}$ is 26.98154 u and that of (2) neutron is 1.008665 u. Find the mass of the product nucleus for the reaction $_{13}Al^{27}$ (n, γ) $_{13}Al^{28}$, given O = 7.722 MeV.(C) Answer in detail. (any one) 3 Explain energy balance in nuclear reactions. Obtain equation for threshold energy in a nuclear (2) reaction. 5 (D) Write a note. (any one) Explain the construction and working of GM counter. Explain the construction and working of Scintillation counter. (A) Answer the following in short. 4 Write the formula for the cyclotron frequency. (2) Name the accelerator which contains only dee. (3) Write the value of k when the reactor is critical. The chain reaction takes place in atom (4)
- bombs.

 (B) Answer in brief. (any one)
 - (1) A linear accelerator is used for accelerating protons. It is designed so that between any pair of accelerating gaps, the protons spend one complete radio frequency cycle inside a drift tube. The frequency applied is 240 MHz. The velocity of the proton in the last cylinder is 20×10⁷ m/s. Find the length of the last drift tube.
 - (2) The energy released by fission of one nucleus of $_{92}\mathrm{U}^{235}$ is 210 MeV. How much energy (in MeV) is released by 1 kg of uranium?

2

- (C) Answer in detail. (any one)
 (1) Derive betatron condition.
 (2) Describe Bohr and Wheeler's theory of nuclear fission.
 (D) Write a note on. (any one)
 5
 - (1) Explain the construction and working of Cyclotron.
 - (2) Explain the construction and working of power reactor.
- 5 (A) Answer the following in short.
 - (1) Define nuclear fusion.
 - (2) Name the method of plasma confinement in stars.
 - (3) What is the antiparticle of proton called? Give its symbol.
 - (4) Name the exchange quanta of gravitational interaction.
 - (B) Answer in brief. (any one) 2
 - (1) Calculate the energy released when a single helium nucleus is formed by the fusion of two deuterium nuclei. Given: m(d) = 2.07478 amu, m (helium) = 4.00388 amu.
 - (2) Show whether the Baryon numbers are conserved in the following reactions:
 - (a) $n = p + e^+ + \overline{\nu}_{\rho}$
 - (b) $p + p \rightarrow n + p + \pi^+$
 - (C) Answer in detail. (any one)(1) Explain the construction and working of hydro
 - (1) Explain the construction and working of hydrogen bomb.
 - (2) Explain classification of elementary particles.
 - (D) Write a note. (any one) 5
 - (1) Explain source of stellar energy
 - (2) Describe elementary particle quantum numbers.

4

3